Skip to main content

Visit this link for 1 : 1 LIVE Classes.

For the reaction $A(g) \rightleftharpoons B(g)$ at 495 K ....

For the reaction $A(g) \rightleftharpoons B(g)$ at 495 K, $\Delta_r G^\circ = -9.478 kJ.mol^{-1} $. If we start the reaction in a closed container at 495 K with 22 millimoles of A, the amount of B in the equilibrium mixture is _ _ _ _ millimoles. (Round off to the nearest integer)

[$R=8.314 J.mol^{-1} .K^{-1} $; ln 10 = 2.303 ]

Solution

For the equilibrium, $\mathop {A(g)}\limits_{a-x} \rightleftharpoons \mathop {B(g)}\limits_x $,

${K_C} = \frac{{\frac{x}{V}}}{{\frac{{a - x}}{V}}} = \frac{x}{{a - x}} = {K_P}{(RT)^{ - 0}} = {K_P}$

$\Delta G^\circ =-2.303 RT log K_P $

$\therefore \log {K_P} = \frac{{ - 9.478 \times 1000}}{{ - 2.303 \times 8.314 \times 495}} = 1$

So, ${K_P} = 10 = \frac{x}{{a - x}}$

$ \Rightarrow 0.1 = \frac{a}{x} - 1$

$ \Rightarrow \frac{a}{x} = 1.1$

$\therefore x = \frac{{22}}{{1.1}} = 20$

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)