Skip to main content

Visit this link for 1 : 1 LIVE Classes.

Let a vector $\alpha \hat i + \beta \hat j $ be obtained by ....

Let a vector $\alpha \hat i + \beta \hat j $ be obtained by rotating the vector $\sqrt 3 \hat i + \hat j $ by an angle $45^\circ $ about the origin in counterclockwise direction in the first quadrant. Then the area of triangle having vertices $(\alpha , \beta )$, $(0, \beta )$ and (0, 0) is equal to:

(A) $2\sqrt 2 $
(B) $\frac {1}{2}$
(C) 1
(D) $\frac {1}{\sqrt 2 }$

Solution

$\sqrt 3 \hat i + \hat j $ = $2 (\frac {\sqrt 3 }{2} \hat i + \frac {1}{2} \hat j )$
= $2 (cos30^\circ \hat i + sin30^\circ \hat j )$

When the above vector is rotated by $45^\circ $ the obtained vector,
= $\alpha \hat i + \beta \hat j $ = $2 (cos75^\circ \hat i + sin75^\circ \hat j )$

So, $\alpha = 2 cos 75^\circ $ & $\beta = 2 sin75^\circ $


As can be seen from the figure above, the triangle under consideration is a right angled triangle.

So, area of triangle = $\frac {1}{2} \times \beta \times \alpha $ = $\frac {1}{2} \times 2 sin 75^\circ \times 2 cos 75^\circ = sin 150^\circ = \frac {1}{2}$

Answer: (B)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)