Visit the website manishverma.site for latest posts, courses, admission & more.

### $\omega = z\bar z - 2z + 2$ $\left| {\frac{{z + i}}{{z - 3i}}} \right| = 1$ $Re(\omega )$=min.$n_{min.} \in N =?$ $\omega ^n \in R$

Let z and $\omega$ be two complex numbers such that $\omega = z\bar z - 2z + 2$, $\left| {\frac{{z + i}}{{z - 3i}}} \right| = 1$ and $Re(\omega )$ has minimum value. Then, the minimum value of $n \in N$ for which $\omega ^n$ is real, is equal to _ _ _ _ .

Solution

Let z = x + iy

We have, $\left| {\frac{{x + iy + i}}{{x + iy - 3i}}} \right| = 1$

$\Rightarrow |x + i(y + 1)| = |x + i(y - 3)|$

$\Rightarrow {x^2} + {(y + 1)^2} = {x^2} + {(y - 3)^2}$

$\Rightarrow 2y + 1 = - 6y + 9$

$\Rightarrow y = 1$

So, $z = x + i$

Now, $\omega = z\bar z - 2z + 2 = {x^2} + {1^2} - 2(x + i) + 2 = {x^2} - 2x + 3 - 2i$

${\mathop{\rm Re}\nolimits} (\omega ) = {x^2} - 2x + 3 = {(x - 1)^2} + 2 = 2 + non - negative$

${\{ {\mathop{\rm Re}\nolimits} (\omega )\} _{min.}} = 2$

$\omega = 2 - 2i = 2\sqrt 2 \left( {\frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 2 }}i} \right) = 2\sqrt 2 \left[ {\cos ( - \frac{\pi }{4}) + i\sin (- \frac{\pi }{4}}) \right]$

${\omega ^n} = {(2\sqrt 2 )^n}\left[ {\cos (- \frac{{n\pi }}{4} ) + i\sin (- \frac{{n\pi }}{4}}) \right]$

For $\omega ^n$ to be real, $\sin ( - \frac{{n\pi }}{4} ) = 0$

The smallest natural number n satisfying above = 4

### Sum of the coefficients in the expansion of $(x+y)^n$ ....

If the sum of the coefficients in the expansion of $(x+y)^n$ is 4096, then the greatest coefficient in the expansion is _ _ _ _ . Solution $C_0 + C_1 + C_2 + C_3 + ......................... + C_n =4096$ $\therefore 2^n = 4096 =2^{12}$ $\Rightarrow n = 12$ Greatest coefficient = ${}^{12}{C_6} = 924$