Skip to main content

Visit this link for 1 : 1 LIVE Classes.

One main scale division of a Vernier calipers is 'a' cm ....

One main scale division of a Vernier calipers is 'a' cm and $n^{th}$ division of the Vernier scale coincides with $(n-1)^{th}$ division of the main scale. The least count of the calipers in mm is:

(A) $ \frac {10na}{(n-1)} $
(B) $ \frac {10a}{(n-1)}$
(C) $ \frac {10a}{n} $
(D) $ (\frac {n-1}{10n})a$

Solution

We have, 1 main scale division MSD = a

1 VSD $= \frac {(n-1)a}{n} $

Least Count = 1 MSD - 1 VSD $= a - \frac {(n-1)a}{n} $

So, least count $= \frac {a}{n}$ cm $= \frac {10a}{n}$ mm

Answer: (C)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)