Skip to main content

Visit this link for 1 : 1 LIVE Classes.

$R=\frac {V}{I}$

$V=(50\pm 2) V$

$I=(20 \pm 0.2 ) A $

% Error = ?

The resistance $R=\frac {V}{I}$, where $V=(50\pm 2) V$ and $I=(20 \pm 0.2 ) A $. The percentage error in R is 'x' %. The value of 'x' to the nearest integer is _ _ _ _ .

Solution

We have, $\frac{{|\Delta R|}}{R} = \frac{{|\Delta V|}}{V} + \frac{{|\Delta I|}}{I} = \frac{2}{{50}} + \frac{{0.2}}{{20}}$

$\therefore $ % Error = $\frac{{|\Delta R|}}{R} \times 100 = \frac{2}{{50}} \times 100 + \frac{{0.2}}{{20}} \times 100 = 4 + 1 = 5$

So, 'x' = 5

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)