Skip to main content

The decomposition of formic acid on gold surface follows ....

The decomposition of formic acid on gold surface follows first order kinetics. If the rate constant at 300 K is $1.0 \times 10^{-3} s^{-1} $ and the activation energy $E_a = 11.488 kJ.mol^{-1} $, the rate constant at 200 K is _ _ _ _ $\times 10^{-5} s^{-1} $. (Round off to the nearest integer)

[Given $R = 8.314 J mol^{-1} K^{-1} $]

Solution

We have, $\log \frac{{{K_2}}}{{{K_1}}} = \frac{{{E_a}}}{{2.303R}}\left( {\frac{{{T_2} - {T_1}}}{{{T_1}{T_2}}}} \right)$

$ \Rightarrow \log \frac{{{K_2}}}{{1.0 \times {{10}^{ - 3}}}} = \frac{{11.488 \times 1000}}{{2.303 \times 8.314}}\left( {\frac{{200 - 300}}{{200 \times 300}}} \right)$

$ \Rightarrow \log \frac{{{K_2}}}{{1.0 \times {{10}^{ - 3}}}} =  - \frac{{11.488 \times 5}}{{2.303 \times 8.314 \times 3}} =  - 1$

$ \Rightarrow {K_2} = {10^{ - 4}} = 10 \times {10^{ - 5}}{s^{ - 1}}$

Answer: 10

Popular posts from this blog