Skip to main content

Visit this link for 1 : 1 LIVE Classes.

The decomposition of formic acid on gold surface follows ....

The decomposition of formic acid on gold surface follows first order kinetics. If the rate constant at 300 K is $1.0 \times 10^{-3} s^{-1} $ and the activation energy $E_a = 11.488 kJ.mol^{-1} $, the rate constant at 200 K is _ _ _ _ $\times 10^{-5} s^{-1} $. (Round off to the nearest integer)

[Given $R = 8.314 J mol^{-1} K^{-1} $]

Solution

We have, $\log \frac{{{K_2}}}{{{K_1}}} = \frac{{{E_a}}}{{2.303R}}\left( {\frac{{{T_2} - {T_1}}}{{{T_1}{T_2}}}} \right)$

$ \Rightarrow \log \frac{{{K_2}}}{{1.0 \times {{10}^{ - 3}}}} = \frac{{11.488 \times 1000}}{{2.303 \times 8.314}}\left( {\frac{{200 - 300}}{{200 \times 300}}} \right)$

$ \Rightarrow \log \frac{{{K_2}}}{{1.0 \times {{10}^{ - 3}}}} =  - \frac{{11.488 \times 5}}{{2.303 \times 8.314 \times 3}} =  - 1$

$ \Rightarrow {K_2} = {10^{ - 4}} = 10 \times {10^{ - 5}}{s^{ - 1}}$

Answer: 10

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)