Skip to main content

Visit this link for 1 : 1 LIVE Classes.

The half life period of radioactive element x is same ....

The half life period of radioactive element x is same as the mean life time of another radioactive element y. Initially they have the same number of atoms. Then:

(A) x and y have same decay rate initially and later on different decay rate.
(B) x and y decay at the same rate always.
(C) x will decay faster than y.
(D) y will decay faster than x.

Solution

Given, ${({t_{1/2}})_x} = {({t_{mean}})_y}$

$\therefore \frac{{0.693}}{{{\lambda _x}}} = \frac{1}{{{\lambda _y}}}$

$ \Rightarrow {\lambda _x} = 0.693{\lambda _y}$

$ \Rightarrow {\lambda _x} < {\lambda _y}$

If N is same, $A \propto \lambda $

$\therefore A_x < A_y $

Answer: (D)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)