Skip to main content

Visit this link for 1 : 1 LIVE Classes.

The temperature of an ideal gas in 3-dimensions is ....

The temperature of an ideal gas in 3-dimensions is 300 K. The corresponding de-Broglie wavelength of the electron approximately at 300 K, is:
[$m_e $ = mass of electron = $9 \times 10^{-31}$ kg, h = Planck constant = $6.6 \times 10^{-34} $Js, $k_b $ = Boltzmann constant = $1.38 \times 10^{-23} JK^{-1} $]

(A) 3.25 nm
(B) 6.26 nm
(C) 2.26 nm
(D) 8.46 nm

Solution

de-Broglie wavelength $\lambda = \frac {h}{p} = \frac {h}{\sqrt {2m_e K}}$

For ideal gas in 3-dimensions, $K = \frac {3}{2} k_b T $

$\therefore \lambda  = \frac{h}{{\sqrt {3{m_e}{k_b}T} }} = \frac{{6.6 \times {{10}^{ - 34}}}}{{\sqrt {3 \times 9 \times {{10}^{ - 31}} \times 1.38 \times {{10}^{ - 23}} \times 300} }}$

$\lambda  \approx \frac{{2.2 \times {{10}^{ - 34}}}}{{3 \times 1.17 \times {{10}^{ - 26}}}} \approx 6.26 \times {10^{ - 9}}m = 6.26nm$

Answer: (B)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)