Skip to main content

Visit this link for 1 : 1 LIVE Classes.

The value of power dissipated across the Zener diode ....

The value of power dissipated across the Zener diode ($V_Z = 15 V $) connected in the circuit as shown in the figure is $x \times 10^{-1} Watt$. The value of x, to the nearest integer, is _ _ _ _ .


Solution

$22 V = V_{R_S} + V_Z $

$\therefore V_{R_S} = 22 - 15 = 7 V $

Current supplied by 22 V = $I = \frac {7}{35} = \frac {1}{5} A$

$I_{R_L} = \frac {15}{90} = \frac {1}{6} A$ 

Now, $I_Z = \frac {1}{5} - \frac {1}{6} = \frac {1}{30} A$

$P_Z = I_Z \times V_Z = \frac {1}{30} \times 15 = 5 \times 10^{-1} Watt$

$\therefore x = 5 $

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)