Skip to main content

Visit this link for 1 : 1 LIVE Classes.

Two salts $A_2 X $ and MX have the same value of ....

Two salts $A_2 X $ and MX have the same value of solubility product of $4.0 \times 10^ {-12} $. The ratio of their molar solubilities i.e. $\frac{{S({A_2}X)}}{{S(MX)}} =$ _ _ _ _ . (Round off to the nearest integer)

Solution

We have, $4.0 \times {10^{ - 12}} = 4[S{({A_2}X)]^3}$

$ \Rightarrow S({A_2}X) = {10^{ - 4}}$

Also, $4.0 \times {10^{ - 12}} = [S{(MX)]^2}$

$ \Rightarrow S(MX) = 2.0 \times {10^{ - 6}}$

The ratio, $\frac{{S({A_2}X)}}{{S(MX)}} = \frac{{{{10}^{ - 4}}}}{{2.0 \times {{10}^{ - 6}}}} = 50$

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)