Skip to main content

Visit this link for 1 : 1 LIVE Classes.

When light of wavelength 248 nm falls on a metal ....

When light of wavelength 248 nm falls on a metal of threshold energy 3.0 eV, the de-Broglie wavelength of emitted electron is _ _ _ _ $A^\circ $. (Round off to the nearest integer)

[Use $\sqrt 3 = 1.73$, $h=6.63 \times 10^{-34} Js$, $m_e = 9.1 \times 10^{-31} Kg $, $c = 3.0 \times 10^8 ms^{-1}$, $1 eV = 1.6 \times 10^{-19} J$]

Solution

We have, $h\nu = \phi + KE $

$\therefore KE =  \frac {hc}{\lambda} - \phi $

$\Rightarrow KE = \frac {6.63\times 10^{-34} \times 3.0 \times 10^8 }{248 \times 10^{-9}} - 3.0 \times 1.6 \times 10^{-19} $

$\Rightarrow KE = 8 \times 10^{-19} - 4.8 \times 10^{-19} = 3.2 \times 10^{-19} J$

de-Broglie wavelength $\lambda = \frac {h}{\sqrt {2.KE.m_e }} = \frac {6.63 \times 10^{-34}}{\sqrt {2 \times 3.2 \times 10^{-19} \times 9.1 \times 10^{-31}}}$

$\Rightarrow \lambda = \frac {6.63 \times 10^{-34}}{7.63 \times 10^{-25}} = 8.7\times 10^{-10} m = 8.7 A ^\circ \approx 9 A ^\circ $

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)