Skip to main content

Visit the website manishverma.site for latest posts, courses, admission & more.

When light of wavelength 248 nm falls on a metal ....

When light of wavelength 248 nm falls on a metal of threshold energy 3.0 eV, the de-Broglie wavelength of emitted electron is _ _ _ _ $A^\circ $. (Round off to the nearest integer)

[Use $\sqrt 3 = 1.73$, $h=6.63 \times 10^{-34} Js$, $m_e = 9.1 \times 10^{-31} Kg $, $c = 3.0 \times 10^8 ms^{-1}$, $1 eV = 1.6 \times 10^{-19} J$]

Solution

We have, $h\nu = \phi + KE $

$\therefore KE =  \frac {hc}{\lambda} - \phi $

$\Rightarrow KE = \frac {6.63\times 10^{-34} \times 3.0 \times 10^8 }{248 \times 10^{-9}} - 3.0 \times 1.6 \times 10^{-19} $

$\Rightarrow KE = 8 \times 10^{-19} - 4.8 \times 10^{-19} = 3.2 \times 10^{-19} J$

de-Broglie wavelength $\lambda = \frac {h}{\sqrt {2.KE.m_e }} = \frac {6.63 \times 10^{-34}}{\sqrt {2 \times 3.2 \times 10^{-19} \times 9.1 \times 10^{-31}}}$

$\Rightarrow \lambda = \frac {6.63 \times 10^{-34}}{7.63 \times 10^{-25}} = 8.7\times 10^{-10} m = 8.7 A ^\circ \approx 9 A ^\circ $

Popular posts from this blog

A man starts walking from the point P (-3, 4) ....

A man starts walking from the point P (-3, 4), touches the x-axis at R, and then turns to reach at the point Q (0, 2). The man is walking at a constant speed. If the man reaches the point Q in the minimum time, then $50 [(PR)^2 + (RQ)^2 ]$ is equal to _ _ _ _ . Solution For time to be minimum at constant speed, the directions must be symmetric. In other words, the angles made by PR and RQ with the vertical must be the same just like in the law of reflection in optics. $tan \theta = \frac {MP}{MR} = \frac {NQ}{NR} $ $\Rightarrow \frac {3-r}{4} = \frac {r}{2}$ $\Rightarrow r=1 $ So, $R \equiv ( - 1,0)$ Now, $50(PR^2+RQ^2)=50[(4+16)+(1+4)]=1250$