Skip to main content

Visit this link for 1 : 1 LIVE Classes.

A cube is placed inside an electric field, $\vec E = 150 y^2 \hat j $ ....

A cube is placed inside an electric field, $\vec E = 150 y^2 \hat j $. The side of the cube is 0.5 m and is placed in the field as shown in the given figure. The charge inside the cube is:

(A) $8.3 \times 10^{-11} C$
(B) $8.3 \times 10^{-12} C$
(C) $3.8 \times 10^{-12} C$
(D) $3.8 \times 10^{-11} C$


Solution

We have, $\phi = \frac {q_{in}}{\epsilon_0}$

Since electric field is upwardly directed, it will only cut the top and bottom surfaces.

Since y = 0 at the bottom surface makes electric field 0 there, no flux is present there. The only flux through the cube is contributed by the flux through the top surface.

Flux through the top surface $=150 \times 0.5^2 \times 0.5^2 $

So, $\phi =150 \times 0.5^2 \times 0.5^2 = \frac {q_{in}}{8.85 \times 10^{-12}}$

$\therefore q_{in} \approx 8.3 \times 10^{-11} C $

Answer: (A)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)