Skip to main content

Visit this link for 1 : 1 LIVE Classes.

Due to cold weather a 1 m water pipe of cross-sectional area ....

Due to cold weather a 1 m water pipe of cross-sectional area $1 cm^2$ is filled with ice at $-10^\circ C $. Resistive heating is used to melt the ice. Current of 0.5 A is passed through $4 k\Omega $ resistance. Assuming that all the heat produced is used for melting, what is the minimum time required?
(Given latent heat of fusion for water/ice $=3.33 \times 10^5 J Kg^{-1}$, specific heat of ice $=2\times 10^3 J Kg^{-1}$ and density of ice $=10^3 Kg m^{-3} $ )

(A) 3.53 s
(B) 0.353 s
(C) 35.3 s
(D) 70.65 s

Solution

Electrical Energy = Thermal Energy

$\therefore I^2 Rt = Cm\Delta T + mL = m (C\Delta T + L) $

$\Rightarrow 0.5^2 \times 4000 \times t = \rho V (2 \times 10^3 \times 10 + 3.33 \times 10^5 )$

$\Rightarrow 1000 t = 10^3 \times Al (2 \times 10^4 + 33.3 \times 10^4 )$

$\Rightarrow t = 1 \times 10^{-4} \times 1 (35.3 \times 10^4 ) = 35.3 s $

Answer: (C)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)