Skip to main content

Visit this link for 1 : 1 LIVE Classes.

For the reaction $2NO_2 (g) \rightleftharpoons N_2O_4 (g) $ ....

For the reaction $2NO_2 (g) \rightleftharpoons N_2O_4 (g) $, when $\Delta S = -176.0 JK^{-1} $ and $\Delta H = -57.8 kJ mol^{-1} $, the magnitude of $\Delta G $ at 298 K for the reaction is _ _ _ _ $kJ mol^{-1} $. (Nearest integer)

Solution

We have, $\Delta G = \Delta H - T \Delta S $

$\Delta S = -176.0 JK^{-1} = -0.176 kJ K^{-1} $

$\Delta G =  -57.8 - 298 \times (-0.176) \approx -57.8+52.5 = -5.3 $

$\therefore |\Delta G | = 5.3  kJ mol^{-1} $

Ans: 5

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)