Skip to main content

Visit the website manishverma.site for latest posts, courses, admission & more.

Planes $x-2y-2z+1=0$ & $2x-3y-6z+1=0$ ....

Let the acute angle bisector of the two planes $x-2y-2z+1=0$ and $2x-3y-6z+1=0$ be the plane P. Then which of the following points lies on P?

(A) $(0,2,-4)$
(B) $(4,0,-2)$
(C) $(-2,0,-\frac {1}{2})$
(D) $(3,1,-\frac {1}{2})$

Solution

Bisectors are given by,

$\frac{{x - 2y - 2z + 1}}{3} =  \pm \frac{{2x - 3y - 6z + 1}}{7}$

$ \Rightarrow 7x - 14y - 14z + 7 =  \pm (6x - 9y - 18z + 3)$

Hence, $x-5y+4z+4=0$ & $13x-23y-32z+10=0$

Let $\theta $ be the angle between $x-2y-2z+1=0$ & $x-5y+4z+4=0$

$\cos \theta  = \frac{{|1 + 10 - 8|}}{{3 \times \sqrt {42} }} = \frac{1}{{\sqrt {42} }} < \frac{1}{{\sqrt 2 }}$

$\theta > 45^\circ $

So, $x-5y+4z+4=0$ is the obtuse angle bisector.

$\therefore $ Acute angle bisector $P \equiv 13x - 23y - 32z + 10 = 0$

The point $(-2,0,-\frac {1}{2})$ satisfies P.

Answer: (C)

Popular posts from this blog

A man starts walking from the point P (-3, 4) ....

A man starts walking from the point P (-3, 4), touches the x-axis at R, and then turns to reach at the point Q (0, 2). The man is walking at a constant speed. If the man reaches the point Q in the minimum time, then $50 [(PR)^2 + (RQ)^2 ]$ is equal to _ _ _ _ . Solution For time to be minimum at constant speed, the directions must be symmetric. In other words, the angles made by PR and RQ with the vertical must be the same just like in the law of reflection in optics. $tan \theta = \frac {MP}{MR} = \frac {NQ}{NR} $ $\Rightarrow \frac {3-r}{4} = \frac {r}{2}$ $\Rightarrow r=1 $ So, $R \equiv ( - 1,0)$ Now, $50(PR^2+RQ^2)=50[(4+16)+(1+4)]=1250$