Skip to main content

Visit this link for 1 : 1 LIVE Classes.

The average translational kinetic energy of $N_2 $ ....

The average translational kinetic energy of $N_2 $ gas molecules at _ _ _ _ $^\circ C $ becomes equal to the K.E. of an electron accelerated from rest through a potential difference of 0.1 Volt. (Given $k_b = 1.38 \times 10^{-23} J/K $) (Fill the nearest integer)

Solution

K.E. of electron =  Translational K.E. of $N_2 $ molecules

$\therefore eV = \frac {3}{2} kT $

$\therefore 2 \times 1.6 \times 10^{-19} \times 0.1 = 3 \times 1.38 \times 10^{-23} \times T $

$\therefore T = \frac {1.6 \times 10^3 }{3 \times 0.69 } \approx 773 K = 500 ^\circ C $

Answer: 500

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)