Skip to main content

Visit this link for 1 : 1 LIVE Classes.

The width of one of the two slits in a YDSE ....

The width of one of the two slits in a Young's double slit experiment is three times the other slit. If the amplitude of light coming from a slit is proportional to the slit-width, the ratio of minimum to maximum intensity in the interference pattern is x:4 where x is _ _ _ _ .

Solution

Given, $\frac {A_1}{A_2} = \frac {3}{1} $

Now, $\frac {I_1}{I_2} = \frac {A_1 ^2 }{A_2 ^2} = (\frac {3}{1})^2 = \frac {9}{1} $

$\frac {I_{min}}{I_{max}} = \frac {(\sqrt I_1 - \sqrt I_2 )^2 }{(\sqrt I_1 + \sqrt I_2 )^2} = \frac {(3-1)^2}{(3+1)^2}=1:4 $

Answer: 1.00

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)