Skip to main content

Visit this link for 1 : 1 LIVE Classes.

Consider a triangle $\Delta$ whose two sides ...

Consider a triangle $\Delta$ whose two sides lie on the x-axis and the line x+y+1=0. If the orthocentre of $\Delta$ is (1, 1), then the equation of the circle passing through the vertices of the triangle $\Delta$ is

(A) $x^2+y^2-3x+y=0$
(B) $x^2+y^2+x+3y=0$
(C) $x^2+y^2+2y-1=0$
(D) $x^2+y^2+x+y=0$

Solution

Reflection of orthocentre about side of a triangle lies on the circumcircle. (Refer https://www.123iitjee.com/2022/03/for-triangle-show-that-point-where.html )

Reflection of orthocentre (1, 1) about side of triangle lying on x-axis is the point (1, -1). Out of 4 options, only option (B) satisfies this.

Let (h, k) be the reflection of orthocentre (1, 1) about side of triangle lying on the line x+y+1=0.

Then, the point $\left( {\frac{{h + 1}}{2},\frac{{k + 1}}{2}} \right)$ lies on the line x+y+1=0.

$\Rightarrow \frac{{h + 1}}{2} + \frac{{k + 1}}{2} + 1 = 0$

Or, h+k+4=0 ....(*)

Also, $\frac{{k - 1}}{{h - 1}} \times  - 1 =  - 1$

Or h = k

From (*), h = k = -2

As expected, (-2, -2) satisfies option (B).

Answer: (B)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)